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A method is proposed for experimentally determining parameters characterizing the 
microstructure of a liquid. The method is based on measurement of the specific 
volumetric flow rates of the liquid as it is pumped through two capillary tubes 
of different cross section. 

In theoretically investigating the hydrodynamics of liquids with an internal microstruc- 
ture, especially wide use has been made of an approach based on the theory of micropolar 
liquids (MPL) [i]. However, there is very little information in the literature on values 
of the material constants which figure in the fundamental equations for the stress tensors 

and micromoments of the MPL. A method is proposed in [2] for determining coefficients char- 
acterizing the microstructure of liquids. Theoretical formulas were obtained for the coef- 
ficients ~, ~, and y, as well as the parameter k= ro[(2bt+yOx/(~+~)?] I12 All of the quanti- 

ties entering into these expressions are measured experimentally while pumping the test 
liquid through three flat capillary tubes with different cross sections. In deriving the 
formulas, the authors used full adhesion boundary conditions. Here, the translational velo- 

§ 
city of the particles v and their microrotation on the surface § were equal, respectively, 

to the velocity and angular velocity of the boundary. 

Following the same procedure, it is easy to obtain similar theoretical formulas with 
boundary conditions for ~ whereby the surface is free of moment stresses [3]. With more 
general boundary conditions [4, 5, 6], the formulas may include a quantity characterizing 
rotation of the particles on the wall. Since the question of the boundary conditions for 

-> 

the vector v has yet to be fully resolved, then the problem of experimentally determining 
the viscosity coefficients -- or at least their complexes -- is a very important one for 
description of the hydrodynamics of the steady-state flow of an MPL in capillary tubes. 

We will examine a stabilized flow of an MPL under the influence of a constant pressure 
gradient dp/dz in a cylindrical capillary tube with an inside radius ro. We ignore the 
compressibility of the liquid, as well as the body forces and moments. Let the physical 
properties of the MPL be constant. The system of differential equations for nontrivial com- 

-> 

ponents of the vectors ~ and ~ has the following form in the present case [i]: 

d ( I d dp (1) 
r d r /  + • W = r dz ' 

d 1 d (m~) --• --2• (2) 
? ~ r dr dr 

We use the following as the boundary conditions 

ro)=O, v(ro)= = (rotv)]~=~o, (3) u~ 

2 

where 0~ ~i. 

Solving system (1), (2) with boundary conditions (3), we obtain an expression for the 

velocity profile 

r~(--dp/dz) { 2 ( 2 ~ + •  m~t~)lo(k)[ Io(k~),~o(_~ ]} I--~+6 ~ ,  1 , (4) 
U z -- 
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Fig. i. Dependence of the ratio ~e/~n for 
water on the inside radius of the capillary 
tube. ro-10 -6, m. 

where ~=r/ro; 6 =2• ; Io(k) and It(k) are modified Bessel functions. 

From (4) we find the specific volumetric flow rate of the micropolar liquid 

48 [1 klo(k) 

Here Qn = ro2 (_dp /dz ) /8~n  i s  the  f low r a t e  f o r  t he  f low of  a Newtonian f l u i d  w i t h  a s h e a r  v i s -  
c o s i t y  ~ n = ~ + , ~ / 2  in  the  same channe l  under  the  i n f l u e n c e  of  a p r e s s u r e  g r a d i e n t  dp /dz .  I t  
shou ld  be n o t e d  t h a t  k i n c r e a s e s  w i t h  an i n c r e a s e  in  ro and t h a t ,  i n  a s u f f i c i e n t l y  broad  
channe l  of  r a d i u s  Ro >>ro, f low of  the  m i c r o p o l a r  l i q u i d  i s  d e s c r i b e d  by the  t t a g e n - - P o i s e u i l l e  
f o r m u l a .  Here ,  (5) changes  i n t o  the  e x p r e s s i o n  

P,g (-- dp/dz) _ C~n. 
Q -  8~n 

By measu r ing  Q, Ro, and dp /dz  i n  the  p r e s e n t  c a s e ,  we can d e t e r m i n e  V n .  

By pumping the  i n v e s t i g a t e d  MPL w i t h  known p r e s s u r e  g r a d i e n t s  (dp /dz)1  and (dp /dz)2  
t h ro ugh  two c a p i l l a r y  t ubes  w i t h  i n t e r n a l  r a d i i  ro and a ro  (0 <a  < 1 ) ,  we o b t a i n  

{ 46 [ k l o ( k ) ] } ,  Q o _ - Q n { l +  46 [ aklo(ak)] I 
Q1 = Q? 1 + - 7  1 2I~(k) a ~  1 ~- (a -~  j j .  

From here 

where 

M [2I~ (ak) - -  aklo (ak)] I~ (k) = [2I~ (k) - -  klo (k)] 11 (ak), (6) 

n n 

M =  Q2 Q1--QI ~Q~ Q~ _ Q~ . (7) 

The parameter k, important in the hydrodynamics of the MPL, is determined from (6). 

Analysis of the function 

f (X) = 211 (X) - -  Xlo (X) I1 (ax) 
211 (ax) - -  aXIo (ax) I1 (x) 

shows that the range of its variation is narrower, the closera is to unity. Since f(k) =M, 
we may make the following observations regarding the choice of the dimensions of the capil- 
lary tubes for the experiments. The values of M are obtained from experimental data which, 
of course, are associated with a certain error. This means that even a small error in the 
measurement of Q may lead to a large error in the calculation of k. Thus, it is necessary 
to choose capillary tubes with inside diameters corresponding to the lowest possible value 
of a. 

From Eq. (5) we can determine the quantity 

6--  Q__Qn k2~l(k ) 
2Q n 21~ (k) - -  klo (k) ' 

which, together with the values of k found earlier, gives us a complete quantitative 
description of the steady-state flow of the MPL in capillary tubes of any diameter. We 
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should note the important fact that a specific value of a does not have to be assigned in 
order to calculate the parameters k and 8, which makes it possible in several cases to quan- 
titatively describe the hydrodynamics of an MPL in channels with unknown boundary conditions. 

Following the above procedure, it is easy to obtain an expression for determining the 
parameters k and ~ in the case where the investigated liquid is pumped through two flat 
channels with distances of 2h and 2ah between their walls. Here, the equation used to find 
k is as follows 

M (1 - -  ak cth ak) = 1 -- k cth k, 

where  k = h [ ( 2 ~ + • 2 1 5 2 1 5  1~ , w i t h  M b e i n g  d e t e r m i n e d  f rom Eq. ( 7 ) .  The s econd  p a r a m e t e r  
6 is calculated from the formula 

8 :  Q__Qn 2k ~ 

O n 3(1--kethk)  

The boundary conditions parameter, of course, characterizes the interaction of the 
particles of liquid both with the solid boundary and with each other. This is shown by the 
fact that it enters into ~ in the form of a combination with~ : ~ = 2~(I -- ~)/[2~ +~(i -- 
~)]. Thus, finding the value of the parameter ~ is just as important a problem as determin- 
ing the viscosity coefficients of the MPL. Of possible promise in this regard for certain 
MPL's is the use of methods of creating "strong bonds" between the liquid particles and the 
boundary, similar to those described in [7] for nematic liquid crystals. Achieving full 
adhesion of the particles to the boundary would make it possible to determine both the 
coefficients ~, ~, and y and the quantity ~ for other boundary conditions. 

At the same time, the possibility of experimentally determining the parameters k = k/ro 
and 6 permits a quantitative description of the steady-state flow of the MPL in capillary 
tubes of any dimensions, regardless of the character of the boundary conditions. 

As a specific example of using the proposed method of determining microstructural para- 
meters, let us examine the results of [8]. Here, an experimental study was made of the 
phenomenon of an increase in the viscosity of polar liquids with a decrease in the radius 
of quartz capillary tubes. It was found that the flow of polar liquids in microcapillary 
tubes of internal radius ro~10 -6 is not described by the Hagen--Poiseuille formula, and 
that the deviation from the formula is greater the smaller the radius. Thus, the volumetric 
flow rate of water through a capillary tube of radius ro = 4"i0 -s m is 1.5 times lower than 
that calculated with the Hagen--Poiseuille formula when a constant tabulated value of the 
viscosity coefficient is inserted in the latter [8]. 

Proceeding on the basis of familiar representations of water as a structured liquid 
[9-12], we can attempt to explain these results by means of the MPL theory. In the flow of 
water in microcapillary tubes, polymolecular associations up to 3-10 -9 m in size which are 
present in the water [i0] "twist" about one another. However, their interaction is accom- 
panied by a continuous dissociation of old associations and creation of new ones. Thus, 
the theory of micropolar liquids can provide only a first approximation in describing the 
phenomenon of an increase in the viscosity of water with a decrease in capillary tube radius. 
Further studies are needed to determine the relationship which must exist between the life- 
time of the associations and the time of their interaction for microrotations to be initiated. 
While not pretending that our examination of the phenomenon and its theoretical description 
by means of MPL theory is strictly adequate, we will illustrate the potential of the method 
proposed here for determining microstructural parameters and find them for water in a first 
approximation. 

We will use the data from [8] (Fig. i) on the flow of water in capillary tubes of inter- 
nal radii rol = 3"10 -7 m and ro2=aro I =5 -lO-e m (a=1/6). Since the form of Eq. (6) is 
fairly complex, to find the zero approximation of the solution we will use the following 
asymptotic representations of same: 

k 2 _-- 24  (1 - -  M a  2) (smaU k), 
2 ( M a  ~ -  1) -6 3a=(M - -  1) 

k ---- 2 (1 - -  M) (~arge k).  
1 - -  a M  

(8) 

(9) 
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The use of Eq. (9) and subsequent refinement of the resulting value with Eq. (6) ~eads to 
the following values of the sought parameters: k= 21.2, ~ =0.84. The parameter k=k/ro I = 
70.3.106 m -I is more convenient for practical use. 

Figure 1 shows the curve, calculated with the above results, which depicts the capil- 
lary-tube-radius dependence of the ratio of the "equivalent" viscosity ~e to the constant- 
volume viscosity of water, which coincides with Dn. By equivalent we mean the viscosity of 
a Newtonian fluid flowing under the same conditions and at the same mean velocity as the 
investigated MPL. Comparison of the corresponding points of this curve with the experimen- 
tal results in [8] shows a difference between them not exceeding 3%. 

In the case where ~ is known, the values of ~, u, and y can be determined. For example, 
given boundary conditions of full adhesion, with ~ = 0, we have ~ = 1.45.10 -s kg-m-~.sec -~, 
=0.2~5-I0 -3 kg-m-l-sec -I, and 7 =3.4"10-19 kg "m'sec-1- 

NOTATION 

~, ~, andy, material constants characterizing momentum transfer in a micropolar liquid; 
a, boundary conditions parameter; Vz and ~, nontrivial components of the velocity and micro- 
rotation vectors, respectively; dp/dz, pressure gradient. 
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